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Abstract:  We propose to create an Image Processing Toolkit that will exploit the GPU architecture to achieve real time 
or near real time image processing.  The main focus of this toolkit is to provide base Image Processing tools, and in doing so 
will also provide some matrix multiplication tools, and matrix solvers.  The main contribution of this effort is to implement 
an image segmentation routine which is based in isoperimetric graph partitioning.  We will implement this on a Windows 
platform using NVidia FX video cards as opposed to the Linux-based OpenVIDIA project. 
 

1. Background:  
Image processing is a prime topic for acceleration on the GPU.  Many image processing techniques have sections 

which consist of a common computation over many pixels.  This fact makes image processing in general a prime topic for 
acceleration on the GPU. 

Computer vision and image processing are very related in that image processing techniques can be applied to 
achieve computer vision or within computer vision algorithms.  The essence of computer vision is to bring more meaning to 
raw image data.  This can include detecting edges, regions, textures, objects, face recognition etc.  In all of the cases you can 
either work with still images or to video sequences.  Processing video sequences in real time using advanced computer vision 
algorithms is a major area of interest.  

The OpenVIDIA project has accelerated many image processing algorithms on Linux systems, and have been able 
to successfully work with video in real time.  They have accelerated, Canny edge filters, Canny ‘corner’ filter, optical flow, 
feature tracker, 3D registration, and can create output for 3D Studio Max.  All of the examples for image processing are 
based on video streams, but can also be applied to still images.   

2. Overall Library Design 
We will provide two general modes for the library routines: method-call and state-machine.   The state-machine will be more 
efficient sequencing multiple operations on the same image, while the method-call may be more convenient for certain types 
of applications.  All calls will take in single image data, and some will take in a sequence of image data (where sequential 
data is applicable).  Depending on the library call, they will output another image, a modified image, or a structure containing 
the resulting computation. 

3. Topics: 
 
We would like to provide the following functionality, and will deliver the parts with an asterisk. 
 

• Computer Vision Tools 
o Image Segmentation 
� Isoperimetric graph partition * 
� Ncut 
� Active Contour * 

o Image Enhancement 
� Histogram Equalization 
� Noise Reduction 

o Convolution 
� Blur * 
� Sharpen * 
� Gabor Filters * 
� Any Kernel * 

o FFT 
� Refocus 

o Edge Detection 
� Canny’s * 
�  Sobel, Prewitt  
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� Roberts  
� Marr-Hildreth (Laplacian of Gaussian) * 

o Feature Point Detection 
� Harris Corner Detector * 

o Pixel Motion 
� Optical Flow * 
� Layer extraction 

• Matrix Tools 
o Matrix multiplication, add, and sum 
� Sparse * 
� Dense 

o Linear Equation Solver 
� Gaussian Elimination  
� Conjugate Gradients * 

o Eigen Vector Solver 

3.1.  Isoperimetric Graph Partitioning [1] 
 
Spectral methods of graph partitioning have been shown to provide a powerful approach to the image segmentation problem. 
Isoperimetric graph partitioning is one of the recent spectral methods.  ‘Isoperimetric Graph Partitioning for Data Clustering 
and Image Segmentation’, Grady and Schwartz (2003) The method has improved the speed and stability of the segmentation 
but is still too slow to apply to each frame of real time video sequences. Hopefully, each step of isoperimetric method can be 
improved by GPGPU techniques. The following diagram shows steps of isoperimetric method and correspondent GPU 
techniques for each step. 
 
 

Sorting  by GPU 

Conjugate gradient 
method using GPU 

Fragment program  
in n2 passes 

Separate pixels into two groups in order of 
segment value of the vector x 

Finding vector x which has segment value 
(from 0 to 1)  using linear equation solver 

Computing weights between each pixel by 
color or intensity distance 

Creating n2 by 1 vector x and  a n2 by n2 
adjacent matrix. 
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The graph partitioning problem is to choose subsets of the vertex set such that the sets share a minimal number of spanning 
edges while satisfying a specified cardinality constraint. In isoperimetric method, we define a isoparametric constant h as  
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and try to find a set S (i.e., a segment) which minimize hG. |∂S| denotes the boundary of a set, S, i.e., the sum of the weights 
from inside of set S to outside of set S. VolS can be expressed as VolS = ∑(di ∀ vi ∈ S). Intuitively, hG means the ratio of the 
connectivity between a segment and backgroud divided by the size of the segment. To find a segment which manimize hG, we 
can make a laplacian matrix and  then can solve the laplacian matrix. The laplacian matrix is defined as this. 
 

    di  if i = j,  
Lij = −w(eij )  if eij ∈ E,  

 0  otherwise.   
 
 
By definition of  L,  

|∂S| = xTLx 
Vol= xTd 

 
To minimize hG, we can solve a lagrange minimizer. The resulting linear equation is  
 

2Lx = Λd. 
 
where Λ is a scalar. Unfortunately, the matrix L is singular. Therefore we arbitrarily designate a node, vg, to include in S (i.e., 
fix xg = 0). This is reflected by removing the gth row and column of L, denoted by L0, and the gth row of x and d, denoted by 
x0 and d0. Then we will L0x0 = d0, which can be solved by gaussian elimination or conjugate method. 
 
Solving equation for x0 yields a real-valued solution that may be converted into a partition by setting a threshold. 
 
Here are some results from the algorithm 
 

 
 
 

3.2. Active Contour 
The active contour (snakes) of an image is curves over an image used in order to find object boundaries.  It is based off of a 
cost function that tries to maximize the gradient across the curve, while minimizing the angle of the curve.  It can be 

 - 3 - 



Image Processing on the GPU  Ahn, Lehr, Turner (2005)   

accomplished using dynamic programming.  We envision an iterative approach of cost O(n) for an n x n size image.  During 
computation all data can be stored on the GPU. 

3.3. Convolutions (Blur, Sharpen, All Kernels) 
Running a convolution across an image is an important primitive in computer vision.  We will allow the user to use some pre-
defined convolutions for Blur and Sharpen (and others listed below).  All convolution functions will return an image with the 
results from running the convolution. 

Different Gabor Filters 

3.4. Gabor Filters 

Filter Responses 

Many computer vision techniques first will convolve an image 
using a set of gabor filters first in order to extract information.  
Gabor filters are odd or even filters (top/bottom of right) using a 
sign/cosine wave under a gaussian.  They can be used for edge 
detection, extraction of texture features (at differing frequencies), 
and in some ways they simulate simple 
and complex cells in the retina and the V1 
of the visual cortex.  The user will be able 
to run a gabor filter, set of gabor filters, or 
adaptive set of gabor filters across an 
image.  The user will also be able to 
extract the resulting images, or the 
average filter response(s). 

3.5. Canny’s Edge Detector 
Canny’s edge detector will first smooth the image using a Gaussian, and then a 2D second derivative function is applied to 
the image.  Then we compute the magnitude of the gradient from the filter and detect the maximum.  Then two thresholds are 
chosen, HIGH and LOW and edges are followed from HIGH until a pixel with a magnitude lower than LOW is found. 

3.6. Marr-Hildresh (Laplacian of Gaussian) 
This is a convolution of an image based off of the ‘Mexican Hat Filter’ or Laplacian.  The Laplacian of an image is defined 
as: 
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First the image is smoothed using a Gaussian filter, and then this filter is applied 
to the smoothed image.  Since we are doing two filters they can actually be 
combined into one so that only one convolution is n

3.7. Harris Corner Detector 
Harris corner are relatively fast on the CPU and yield good results.  We would like to implement the regular corner detector 
as well as a multi-scaled harris coner detector which will mip-map the image and detect corners at each level. This is useful 
for obtaining hidden edge detection because an edge may only be able to be detected at a higher level.   

3.8. Optical Flow 
Optical flow is widely used to calculate pixel movement between frames.  This is done by optimizing pixel variation through 
a sequence of images.  Large fast movements may result in incorrect flow.  Optical flow can be used in order to obtain rough 
estimates of where objects are by using the fact that larger movements in the visual field are usually from objects that are 
closer to the camera.  This function will result in either n-1 images, or one image displaying the flow of a set of specified 
pixels throughout the sequence. 
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3.9. Sparse Matrix and Conjugate Gradients [2] 
Linear Algebra is heavily used for our image segmentation algorithm.  There are two fundamental areas that require attention.  
Basic operations (multiplication and addition) and solving Linear systems. 
 
Basic operations such as dense matrix multiplication and adding has already been well studied for the course and do not need 
a review here. 
 
At the core of the algorithm lies the deceptively simple equation (L0x0 = d0).  And to solve this requires solving “a large 
sparse system of symmetric equations where the number of nonzero entries in L will equal 2m.”  Using a dense matrix 
solution algorithm would be very costly in this case and a sparse algorithm has the potential to greatly increase the efficiency 
of the implementation as a whole.  While dense matrix GPU multipliers are relatively simple to create, they do not possess 
enough redeeming qualities to justify their use in this case 
 
Since the algorithm is to run on the GPU, an iterative conjugate gradient method lends itself best to the operating 
environment.  This method gives us the option of sacrificing accuracy for speed and visa versa.  This algorithm is also more 
stable than eigenvector approximation which can converge on inappropriate results in some circumstances, or fail to converge 
at all. 
 
On the GPU, the conjugate gradient solver requires two non-trivial functions: sparse matrix and vector multiplication and 
vector inner product.  The matrix-vector multiplication data representation must be handled carefully.  Matrix A's elements 
are stored in a very interesting manner.  The diagonal elements (aii) are held in one texture so they match directly with the 
vector for each i (Xi).  Off-diagonal, non-zero elements are stored in a second texture in sequence with yet another texture (R) 
providing a series of pointers to the beginning of each segment.  To ensure a very complicated and impressive looking 
design, the pointer texture also applies to the coordinates in another indirection texture (C) that in turn provides pointers into 
the unknown vector.  Note that this means that the layouts of A and C are the same, but R is still required as an indicator of 
the boarder between segments.  As a high level understanding, what this all does is allow a tight mapping between the matrix 
and the unknowns vector, stripping away large unneeded portions and taking advantage of the sparseness. 
 

 
Graphical representation of textures involved 

 
It should be expressly noted that these textures should be created at the same time the original matrix is being initialized so as 
to save time and not require a searching re-traversal of the space.  Using: 
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The matrix vector-multiplication can be completed through a series of passes into y with appropriate upper bounds on the 
summation. 
 
This method takes GPU abilities up to the time of the GeForce FX into account.  While this may be too modern for many 
users, it is here considered an appropriate level to be operating at. 
 
The most well known method for solving a linear system of equations is Gaussian Elimination.  Simply put, this is a series of 
row based operations, such as multiplying, adding, and swapping rows.  This is done in an attempt to simplify equations 
down so that the variable's values may be found one at a time.  In the opinion given here, this is not a good algorithm to 
implement on the GPU as it requires too much algorithmic awareness of the data content.  This awareness would have to be 
maintained on the CPU and the BUS hit of reading that data back is too great, especially when taking the computations done 
by the CPU to determine the next step.  This quickly becomes little more than a novelty.  The concept may be further 
investigated, but little is expected from this branch of inquiry.   
 
These two fundamental parts of linear algebra provide a tool-base to allow a much grander realm, only touched upon in our 
work here. 
 

4. Summary 
In summary we are going to create a library with two modes, method-call and state-machine, with the following functions: 
 

• Computer Vision Tools 
o Image Segmentation 
� Isoperimetric graph partition * 
� Active Contour * 

o Convolution 
� Blur * 
� Sharpen * 
� Gabor Filters * 
� Any Kernel * 

o Edge Detection 
� Canny’s * 
� Marr-Hildreth (Laplacian of Gaussian) * 

o Feature Point Detection 
� Harris Corner Detector * 

o Pixel Motion 
� Optical Flow * 

• Matrix Tools 
o Matrix multiplication, add, and sum 
� Sparse * 

o Linear Equation Solver 
� Conjugate Gradients * 

 
We will be implementing the algorithms above using both the CPU and GPU.  We will be testing on an AMD Athlon 2Ghz 
with a NVidia Quadro FX 3400 PCIe.
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